Abstract
The advancement in Internet of Things (IoT) technology has transformed our daily lifestyle. Particularly, voice assistants such as Amazon's Alexa and Google Assistant are commonly deployed in households. These voice assistants enable users to interact with other devices in a smart home ecosystem. In this paper, we focus on two security issues that arise with the use of smart speakers, and present network flow fingerprinting methods to mitigate their impact. First, we concentrate on the misactivation of smart speakers in which spoken words unintentionally activate the device. This may lead to private user conversations being recorded and sent to the cloud without the user even noticing. To prevent such misactivation, we explore locality-sensitive hash-based machine learning approaches. Our evaluation results with the network traffic of four different smart speakers show that the proposed approach can achieve an area under the curve (i. e., AUC) of 93% to 99%. Secondly, we explore whether the voice commands of the device owner can be distinguished from other individuals based on the generated network traffic fingerprint without any analysis of the actual sound wave. Evaluation results with five different user voices show that we can achieve an average AUC of 72% to 81% by ensembling multiple machine learning models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.