Abstract

Using a mirror adequately oriented, the motion of just one hand induces the illusion of the movement with the other hand. Here, we tested the hypothesis that such a mirror phenomenon may be underpinned by an electroencephalographic (EEG) event-related desynchronization/synchronization (ERD/ERS) of central alpha rhythms (around 10Hz) as a neurophysiological measure of the interactions among cerebral cortex, basal ganglia, and thalamus during movement preparation and execution. Eighteen healthy right-handed male participants performed standard auditory-triggered unilateral (right) or bilateral finger movements in the No Mirror (M-) conditions. In the Mirror (M+) condition, the unilateral right finger movements were performed in front of a mirror oriented to induce the illusion of simultaneous left finger movements. EEG activity was recorded from 64 scalp electrodes, and the artifact-free event-related EEG epochs were used to compute alpha ERD. In the M- conditions, a bilateral prominent central alpha ERD was observed during the bilateral movements, while left central alpha ERD and right alpha ERS were seen during unilateral right movements. In contrast, the M+ condition showed significant bilateral and widespread alpha ERD during the unilateral right movements. These results suggest that the above illusion of the left movements may be related to alpha ERD measures reflecting excitatory desynchronizing signals in right lateral premotor and primary somatomotor areas possibly in relation to basal ganglia-thalamic loops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.