Abstract

We demonstrate, through various examples of Hamiltonian systems, that symplectic structures have been encoded into the Painlevé test. Each principal balance in the Painlevé test induces a mirror transformation that regularizes movable singularities. Moreover, for finite-dimensional Hamiltonian systems, the mirror transformations are canonical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.