Abstract

Questions regarding the malleability of the mirror neuron system (MNS) continue to be debated. MNS activation has been reported when people observe another person performing biological goal-directed behaviors, such as grasping a cup. These findings support the importance of mapping goal-directed biological behavior onto one's motor repertoire as a means of understanding the actions of others. Still, other evidence supports the Associative Sequence Learning (ASL) model which predicts that the MNS responds to a variety of stimuli after sensorimotor learning, not simply biological behavior. MNS activity develops as a consequence of developing stimulus-response associations between a stimulus and its motor outcome. Findings from the ideomotor literature indicate that stimuli that are more ideomotor compatible with a response are accompanied by an increase in response activation compared to less compatible stimuli; however, non-compatible stimuli robustly activate a constituent response after sensorimotor learning. Here, we measured changes in the mu-rhythm, an EEG marker thought to index MNS activity, predicting that stimuli that differ along dimensions of ideomotor compatibility should show changes in mirror neuron activation as participants learn the respective stimulus-response associations. We observed robust mu-suppression for ideomotor-compatible hand actions and partially compatible dot animations prior to learning; however, compatible stimuli showed greater mu-suppression than partially or non-compatible stimuli after explicit learning. Additionally, non-compatible abstract stimuli exceeded baseline only after participants explicitly learned the motor responses associated with the stimuli. We conclude that the empirical differences between the biological and ASL accounts of the MNS can be explained by Ideomotor Theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call