Abstract
The paper presents a set of experiments that were performed to characterize the freezing front propagation in water first, and in an agar-gel solution afterwards. The experimental setup made of Peltier devices, to emulate the cryogenic effect, and a copper cold finger, to mimic the cold probe interface, are described. We claim that by monitoring some temperatures at the generating cryodevice, several pieces of information can be derived through the cold interface to assess the outside thermodynamic changes. The employed technique, known as mirror image, allows determining the occurrence of the initial ice formation outside the cryo-probe and in the surrounding material, also with different magnitudes of the thermal contact resistance at the cold interface. For both water and agar the ice penetration was found to be non linear versus time, and proportional to the square root of time in the performed experiments. The ice drift velocity decreases according to its penetration inside the tested materials. At the beginning of ice formation, the measured drift velocities are approximately 0.11 mm/s and 0.06 mm/s for water and agar, respectively, and after the ice penetrates 2 mm, they become approximately 0.03 mm/s for both materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.