Abstract

Abstract. In terrestrial laser scanning (TLS), the surface geometry of objects is scanned by laser beams and recorded digitally. This produces a discrete set of scan points, commonly referred to as a point cloud. The coordinates of the scan points are determined by measuring the angles and the time-of-flight relative to the origin (scanner position). However, if it comes to mirror surfaces laser beams are fully reflected, due to the high reflectivity. Mirrors do not appear in the point cloud at all. Instead, for every reflected beam, a incorrect scan point is created behind the actual mirror plane. Consequently, problems arise in multiple derived application fields such as 3D virtual reconstruction of complex architectures. The paper presents a new approach to automatically detect framed rectangular mirrors with known dimensions and to correct the 3D point cloud, using the calculated mirror plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.