Abstract

We explore a model introduced by Cyr-Racine, Ge, and Knox (arXiv:2107.13000(2)) that resolves the Hubble tension by invoking a ``mirror world" dark sector with energy density a fixed fraction of the ``ordinary" sector of Lambda-CDM. Although it reconciles cosmic microwave background and large-scale structure observations with local measurements of the Hubble constant, the model requires a value of the primordial Helium mass fraction that is discrepant with observations and with the predictions of Big Bang Nucleosynthesis (BBN). We consider a variant of the model with standard Helium mass fraction but with the value of the electromagnetic fine-structure constant slightly different during photon decoupling from its present value. If $\alpha$ at that epoch is lower than its current value by $\Delta \alpha \simeq -2\times 10^{-5}$, then we can achieve the same Hubble tension resolution as in Cyr-Racine, et al. but with consistent Helium abundance. As an example of such time-evolution, we consider a toy model of an ultra-light scalar field, with mass $m <4\times 10^{-29}$ eV, coupled to electromagnetism, which evolves after photon decoupling and that appears to be consistent with late-time constraints on $\alpha$ variation and the weak equivalence principle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call