Abstract
Cisplatin has a broad-spectrum antitumor activity and is widely used for the treatment of various malignant tumors. However, acquired or intrinsic resistance of cisplatin is a major problem for patients during the therapy. Recently, it has been reported Cancer Stem Cell (CSC)-derived drug resistance is a great challenge of tumor development and recurrence; therefore, the sensitivity of Breast Cancer Stem Cells (BCSCs) to cisplatin is of particular importance. Increasing evidence has shown that there is a relationship between cisplatin resistance/sensitivity genes and related miRNAs. It is known that dysregulation of relevant miRNAs plays a critical role in regulating target genes of cisplatin resistance/sensitivity in various pathways such as cellular uptake/efflux, Epithelial-Mesenchymal Transition (EMT), hypoxia, and apoptosis. Furthermore, the efficacy of the current chemotherapeutic drugs, including cisplatin, for providing personalized medicine, can be improved by controlling the expression of miRNAs. Thus, potential targeting of miRNAs can lead to miRNA-based therapies, which will help overcome drug resistance and develop more effective personalized anti-cancer and cotreatment strategies in breast cancer. In this review, we summarized the general understandings of miRNAregulated biological processes in breast cancer, particularly focused on the role of miRNA in cisplatin resistance/ sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.