Abstract

Estrogen receptor-alpha (ERα) is a clinically important therapeutic target for breast cancer. However, tumors that lose ERα are less responsive to anti-estrogens such as tamoxifen. MicroRNAs (miRNAs) are small RNAs that regulate expression of their target gene and dysregulations of miRNA has been identified in many diseases including human cancer. However, only a few miRNAs associated with tamoxifen resistance has been reported. In this study, we found that lymphocyte antigen 6 complex (LY6K), which is a member of the Ly-6/μPAR superfamily and related to breast cancer progression and metastasis, is inversely correlated with ERα expression. We, for the first time, found miRNAs involved in the regulatory molecular mechanism between ERα and LY6K and related to tamoxifen susceptibility in breast cancer. miR-192-5p, induced by LY6K, downregulates ERα directly and induced tamoxifen resistance in ERα-positive breast cancer cells. In addition, re-expression of ERα in ERα-negative breast cancer cells increased miR-500a-3p expression and directly inhibits LY6K expression. Ectopic expression of miR-500a-3p sensitized ERα-negative cells to tamoxifen by increasing apoptosis. Finally, we observed an inverse correlation between LY6K and ERα in primary breast cancer samples. We found that patients with recurrence showed high expression of miR-192-5p after tamoxifen treatments. In addition, expression of miR-500a-3p was significantly correlated to survival outcome. As miRNAs involved in the regulatory mechanism between LY6K and ERα can affect tamoxifen resistance, downregulating miR-192-5p or re-expressing miR-500a-3p could be a potential therapeutic approach for treating tamoxifen resistant patients.

Highlights

  • Breast cancer is the common malignant tumor world-wide in women

  • To investigate LY6K is involved in the regulation of estrogen receptor α (ERα) expression, we evaluated both the mRNA and protein levels in the breast cancer cell lines

  • We have shown that LY6K and ERα have an inverse correlation in breast cancer and that miRNAs involved in this mechanism affect tamoxifen resistance

Read more

Summary

Introduction

Breast cancer is the common malignant tumor world-wide in women. Breast cancer is classified into several subgroups according to the expression of the following receptors: estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) [1]. 70% of breast cancer patients are dependent on estrogen receptor α (ERα) [2], so diverse treatment options have been developed targeting ERα [3], [4]. Tamoxifen is broadly used in adjuvant treatment for ER-positive breast cancer patients. Tamoxifen was clinically associated with growth arrest and apoptosis by interrupting estrogen binding to the ER in ERα-positive breast cancer. Tumors that undergo loss of ER or negative expression of ER have less responsiveness to ER-targeted drugs in breast cancer [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call