Abstract

BackgroundThe aim of this study was to investigate the role of urine-derived extracellular vesicles (uEVs) in diabetic kidney disease (DKD) in patients diagnosed with type 2 diabetes mellitus (T2DM).MethodsUEVs were characterized by size distribution and microRNA content by next-generation small RNA sequencing and quantitative reverse transcription PCR.ResultsA subset of sixteen miRNAs enriched in T2DM patients with DKD, including hsa-miR-514a-5p, hsa-miR‑451a, hsa-miR-126-3p, hsa-miR-214, or hsa-miR‑503 was identified. Eight miRNAs as hsa-miR-21-3p, hsa-miR-4792, hsa-miR‑375, hsa-miR-1268a, hsa-miR-501-5p, or hsa-miR-582 were downregulated. Prediction of potential target genes and pathway enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed possible functions related to cellular processes such as apoptosis, inflammation, and tissue remodeling, that promote diabetic complications, such as DKD. Among them, hsa-miR-375, hsa-miR-503, and hsa-miR-451a make important contribution. Additionally, downregulated hsa-miR-582-5p has not been reported so far in any diabetes-related pathways.ConclusionsThis study revealed the most significant miRNAs in uEVs of patients with T2DM. However, as this is a bioinformatic prediction that we performed based on the putative targets of the identified miRNAs. Thus, further in vitro functional studies are needed to confirm our findings. Knowing the fact that EVs are crucial in transferring miRNAs, there is a great need toto discover their involvement in the pathomechanism of T2DM-related kidney disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call