Abstract

MicroRNAs (miRNAs) control cellular gene expression via primarily binding to 3' or 5' untranslated region of the target transcript leading to translational repression or mRNA degradation. In most cases, miRNAs have been observed to fine-tune the cellular responses and, therefore, act as a rheostat rather than an on/off switch. Transcription factor PU.1 is a master switch that controls monocyte/macrophage development from hematopoietic stem cells. Recent Advances: PU.1 induces a specific set of miRNAs while suppressing the miR17-92 cluster to regulate monocyte/macrophage development. In addition to development, miRNAs tightly control the macrophage polarization continuum from proinflammatory M1 or proreparative M2 by regulating expression of key transcription factors involved in the process of polarization. miRNAs are intricately involved with fine-tuning fundamental macrophage functions such as phagocytosis, efferocytosis, inflammation, tissue repair, and tumor promotion. Macrophages are secretory cells that participate in intercellular communication by releasing regulatory molecules and microvesicles (MVs). MVs are bilayered lipid membranes packaging a hydrophilic cargo, including proteins and nucleic acids. Macrophage-derived MVs carry functionally active miRNAs that suppress gene expression in target cells via post-transcriptional gene silencing, thus regulating cell function. In summary, miRNAs fine-tune several major facets of macrophage development and function. Such fine-tuning is critical in preventing exaggerated macrophage response to endogenous or exogenous stimuli. A critical role of miRNAs in the regulation of innate immune response and macrophage biology, including development, differentiation, and activation, has emerged. A clear understanding of such regulation on macrophage function remains to be elucidated. Antioxid. Redox Signal. 25, 795-804.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.