Abstract

“Zijuan” is specific tea resource with abundant secondary metabolites, like catechins, anthocyanins, flavonoids, etc. Its biosynthesis is a network of multiple metabolic pathways connected by associated nodes, which is controlled by a variety of structural and regulatory genes. MicroRNAs (miRNAs), as a non-coding RNAs, play important roles in plant growth, development and secondary metabolism by regulating gene expression. In this study, four independent miRNA libraries of bud, second-leaf, open surface leaf and mature-leaf of “Zijuan” tea were constructed and sequenced by high-throughput sequencing. 126 known miRNAs were identified and divided into 26 families, and 119 novel miRNAs were predicted. Based on the transcriptome data of “Zijuan” tea, 724 and 2,285 target genes were predicted for known and novel miRNAs, respectively. The predicted target genes were mostly transcription factors, which included MYB and bHLH transcription factors for regulating the biosynthesis of secondary metabolites -- anthocyanins and flavonoids. All the above results would provide a theoretical basis for further studies on miRNA regulating the development of tea leaf and the biosynthesis of secondary metabolites in Camellia sinensis .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.