Abstract

The current study aimed to investigate microRNA-155 (miR-155) expression in spinal tuberculosis-induced intervertebral disc destruction and its regulatory role in disease pathogenesis. A total of 26 patients with intervertebral disc destruction induced by spinal tuberculosis and 31 healthy individuals were included. Reverse transcription-quantitative polymerase chain reactions, western blot analysis and ELISA were performed to detect mRNA and protein expression levels. A bioinformatics analysis was applied to predict the upstream regulator of matrix metalloproteinase (MMP)13, which was confirmed by dual-luciferase reporter assay. Compared with the control group, mRNA and protein expression levels of MMP13 were significantly increased in the intervertebral disc of patients with spinal tuberculosis. However, miR-155 expression in the intervertebral disc of patients with spinal tuberculosis was significantly decreased compared with the control group. Dual-luciferase reporter assays suggested that miR-155 bound to the 3′-untranslated region of MMP13 to regulate gene expression. In primary annulus fibrosus cells, upregulated miR-155 expression significantly decreased MMP13 expression in the cells and culture supernatant, whereas it increased type II collagen expression. Upregulated MMP13 expression in the intervertebral disc in patients with spinal tuberculosis may be correlated with downregulated miR-155 expression. miR-155 may regulate expression levels of associated proteins in the intervertebral disc via modulating MMP13 expression, which contributes to the disease pathogenesis. The results of the current study may provide the theoretical basis for the diagnosis and treatment of disc damages caused by spinal tuberculosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call