Abstract
AimsMicroRNAs (miRNAs) play important roles in several biological processes. In this study, we investigated the role of miR-1, an endothelin-1 (ET-1) targeting miRNA, in endothelial cells (ECs) and tissues of diabetic animals. ET-1 is known to be of pathogenetic significance in several chronic diabetic complications. Main methodsPCR array was used to identify alterations of miRNA expression in ECs exposed to glucose. miR-1 expression was validated by TaqMan real-time PCR assay. Human retinal ECs (HRECs) and human umbilical vein ECs (HUVECs) exposed to various glucose levels with or without miR-1 mimic transfection, and tissues from streptozotocin-induced diabetic animals after two months of follow-up, were examined for miR-1 expression, as well as ET-1 and fibronectin (FN) mRNA and protein levels. Key findingsArray analyses showed glucose-induced alterations of 125 miRNAs (out of 381) in ECs exposed to 25mM glucose compared to 5mM glucose. Fifty-one miRNAs were upregulated and 74 were downregulated. 25mM glucose decreased miR-1 expression and increased ET-1 mRNA and protein levels. miR-1 mimic transfection prevented HG-induced ET-1 upregulation. Furthermore, glucose induced upregulation of FN, which is mediated partly by ET-1, was also prevented by such transfection.Diabetic animals showed decreased miR-1 expression in the retina, heart and kidneys. In parallel, ET-1 mRNA expressions were increased in these tissues of diabetic animals, in association with upregulation of FN. SignificanceThese results indicate a novel glucose-induced mechanism of tissue damage, in which miR-1 regulates ET-1 expressions in diabetes. Identifying such mechanisms may lead to RNA based treatment for diabetic complications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.