Abstract
Simple SummaryMicroRNAs are essential regulators of gene expression and potential non-invasive biomarker candidates for various human cancers as they can be detected in bodily fluids. Several tools have been developed to analyze small RNA-sequencing data; however, they have limitations and restrictions such as lack of optimal configuration, parameterization, and interoperability with other tools and platforms. miRGalaxy is an open-source, Galaxy-based framework for analyzing NGS data focusing on microRNAs and their sequence variants—isomiRs. Galaxy is a web-based platform for data-intensive biomedical research, allowing user-friendly analysis and accessibility to hundreds of tools. miRGalaxy is designed specifically for identifying and classifying human microRNAs and isomiRs, as well as detecting deregulated microRNAs and isomiRs between two test groups, summarized by output visualization. By examining the differential expression of individual isomiR species across samples, miRGalaxy can help discover novel biomarkers.Tools for microRNA (miR) sequencing data analyses are broadly used in biomedical research. However, the complexity of computational approaches still remains a challenge for biologists with scarce experience in data analytics and bioinformatics. Here, we present miRGalaxy, a Galaxy-based framework for comprehensive analysis of miRs and their sequence variants—miR isoforms (isomiRs). Though isomiRs are commonly reported in deep-sequencing experiments, their detailed structure complexity and specific differential expression (DE) remain not fully examined by the majority of the available analysis tools. miRGalaxy encompasses biologist-user-friendly tools and workflows dedicated to the analysis of the isomiR-ome and its complex behavior in various biological samples. miRGalaxy is developed as a modular, accessible, redistributable, shareable, and user-friendly framework for scientists working with small RNA (sRNA)-seq data. Due to its modular workflow, advanced users can customize the steps and tools for their needs. In addition, the framework provides an analysis report where the significant output results are summarized in charts and visualizations. miRGalaxy can be accessed via preconfigured Docker image flavor and a Toolshed installation if the user already has a running Galaxy instance. Over the last decade, studies on the expression of miRs and isomiRs in normal and deregulated tissues have led to the discovery of their potential as diagnostic biomarkers. The detection of miRs in biofluids further expanded the exploration of the miR repertoire as a source of liquid biopsy biomarkers. Here we show the miRGalaxy framework application for in-depth analysis of the sRNA-seq data from two different biofluids, milk and plasma, to identify, annotate, and discover specific differentially expressed miRs and isomiRs.
Highlights
The rapid development of high-throughput sequencing technologies and related bioinformatics tools for processing RNA sequencing data has led to the identification of a huge number of sequences having the distinctive features of miRs [1,2,3,4,5,6]
We have developed miRGalaxy, an open-source, Galaxy-based framework for miR and isomiR analysis to address several essential needs in the field
MiRGalaxy provides a modular workflow for miR/isomiR analysis to further expand the possibilities of detailed isomiR identification, classification, and expression assessment
Summary
The rapid development of high-throughput sequencing technologies and related bioinformatics tools for processing RNA sequencing data has led to the identification of a huge number of sequences having the distinctive features of miRs [1,2,3,4,5,6]. They are produced by different types of genomic loci (miR genes, non-miR genes, and others), the largest being the contribution of miR genes, further supported by a huge number of studies in various taxa [7,8,9]. The reference miR sequences annotated as the most dominant sequence derived from a particular miR gene are often found to be less represented (e.g., expressed) than its isomiR(s) [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.