Abstract

BackgroundThe knowledge of miRNAs regulating the expression of sets of mRNAs has led to novel insights into numerous and diverse cellular mechanisms. While a single miRNA may regulate many genes, one gene can be regulated by multiple miRNAs, presenting a complex relationship to model for accurate predictions.ResultsHere, we introduce miREM, a program that couples an expectation-maximization (EM) algorithm to the common approach of hypergeometric probability (HP), which improves the prediction and prioritization of miRNAs from gene-sets of interest. miREM has been made available through a web-server (https://bioinfo-csi.nus.edu.sg/mirem2/) that can be accessed through an intuitive graphical user interface. The program incorporates a large compendium of human/mouse miRNA-target prediction databases to enhance prediction. Users may upload their genes of interest in various formats as an input and select whether to consider non-conserved miRNAs, amongst filtering options. Results are reported in a rich graphical interface that allows users to: (i) prioritize predicted miRNAs through a scatterplot of HP p-values and EM scores; (ii) visualize the predicted miRNAs and corresponding genes through a heatmap; and (iii) identify and filter homologous or duplicated predictions by clustering them according to their seed sequences.ConclusionWe tested miREM using RNAseq datasets from two single “spiked” knock-in miRNA experiments and two double knock-out miRNA experiments. miREM predicted these manipulated miRNAs as having high EM scores from the gene set signatures (i.e. top predictions for single knock-in and double knock-out miRNA experiments). Finally, we have demonstrated that miREM predictions are either similar or better than results provided by existing programs.

Highlights

  • The knowledge of Micro RNA (miRNA) regulating the expression of sets of Messenger RNA (mRNA) has led to novel insights into numerous and diverse cellular mechanisms

  • In contrast to current methods based on hypergeometric probability (HP) only, we introduce a novel strategy in complement to HP, which (i) ’weigh-down’ the contribution from overlapping target genes when calculating the significance of each miRNAsignature using an expectation-maximization (EM) algorithm, a general probabilistic framework that can be used for this purpose [12]; and (ii) cluster all predicted miRNAs according to their seed region sequences for identifying “synonymous” predictions

  • We used a gene-set of repressed genes as input (Additional file 3: Table S2) and ran miREM, CORNA, GeneSet2MiRNA and ChemiRs (Table 2 and Additional file 4: Table S3; for Sylamer, whole gene list ranked by fold change was input). miREM has predicted involving miRNAs correctly, with hsa-miR-155-5p and hsa-miR-1-3p ranked at the first and third positions respectively

Read more

Summary

Results

We have developed miREM, an HP-EM-based program designed to predict miRNA activities from a gene list. miREM’s web server incorporates a large compendium of human/mouse miRNA-target prediction databases and provides rich output results facilitating prioritization and interpretation of predicted results. To test miREM performance, we benchmarked miREM predictions against CORNA [7], GeneSet2MiRNA [8], ChemiRs [9], and Sylamer [10] results using several datasets with known miRNA activities These are detailed in three case studies as follows: Case study 1: knock-in miRNA experiments We used two RNAseq expression datasets from miR-155 and miR-1 knock-in experiments in U2OS cells, respectively [25]. In these experiments, we used a gene-set of repressed genes as input (Additional file 3: Table S2) and ran miREM, CORNA, GeneSet2MiRNA and ChemiRs (Table 2 and Additional file 4: Table S3; for Sylamer, whole gene list ranked by fold change was input). We tested miREM’s performances using different HP p-value thresholds and EM convergence parameters given the downregulated gene list from hsa-miR-155 knock-in experiment. hsa-miR-155-5p remained the first-ranked candidate in various prediction settings (Additional file 6: Table S5)

Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.