Abstract

Identification of microRNAs from plants is a crucial step for understanding the mechanisms of pathways and regulation of genes. A number of tools have been developed for the detection of microRNAs from small RNA-seq data. However, there is a lack of pipeline for detection of miRNA from EST dataset even when a huge resource is publicly available and the method is known. Here we present miRDetect, a python implementation to detect novel miRNA precursors from plant EST data using homology and machine learning approach. 10-fold cross validation was applied to choose best classifier based on ROC, accuracy, MCC and F1-scores using 112 features. miRDetect achieved a classification accuracy of 93.35% on a Random Forest classifier and outperformed other precursor detection tools in terms of performance. The miRDetect pipeline aids in identifying novel plant precursors using a mixed approach and will be helpful to researchers with less informatics background.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.