Abstract

Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs’ design. The platform allows the user to fully customize each stage involved in the MIPs’ design, with the main goal to support the synthesis in the wet-laboratory. Availability: MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.

Highlights

  • Imprinted polymers (MIPs) have been involved in a huge number of processes, boasting many hundreds of articles published annually in this area ([1] and references within)

  • Molecularly imprinted polymers (MIPs) are frequently used in chromatography, sensors and assays, and they are considered as the cost-effective substitutes for biological macromolecules in several research areas and practical applications [2]

  • As the monomers used for the tests possess different physicochemical properties, our virtual library contains acidic monomers: acrylamido-2-methyl-1-propanesulfonic acid (AMPSA), acrylic acid (AA), itaconic acid (IA), methacrylic acid (MAA) and trifluoromethylacrylic acid (TFMAA); basic monomers: allylamine, 1-vinylimidazole (VI), 2-vinylpyridine (2-VP), 4-vinylpyridine (4-VP) and N,N-diethylamino ethyl methacrylate (DEAEM) and neutral monomers: acrolein, acrylamide, acrylonitrile, m-divinylbenzene, p-divinylbenzene, ethylene glycol dimethacrylate (EGDMA), 2-hydroxyethyl methacrylate (HEM), N,N -methylenebisacrylamide (MBAA) and styrene

Read more

Summary

Introduction

Imprinted polymers (MIPs) have been involved in a huge number of processes, boasting many hundreds of articles published annually in this area ([1] and references within). A molecularly imprinted polymer can be defined as the process of template-induced formation of specific recognition sites (binding or catalytic) in a material where the template directs the positioning and orientation of the material’s structural components by a self-assembling mechanism. In a non-covalent molecular imprinting, for a template molecule (or target), appropriate functional monomers (FMs) are chosen and allowed to form a self-assembly construct. Computational techniques have been advanced and exploited in the optimization of polymer composition to rationally design high affinity synthetic receptors by using the molecular imprinting technique [7]. Alejandro Giorgetti is the corresponding author. aMirko Busato and Rosario Distefano contributed to this work

Related Work
Workflow and Architecture
Method Validation
Application Cases
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.