Abstract

Cervical cancer patients have a high risk of metastasis and a poor prognosis with shorter disease-free survival. Thus, novel biomarkers and feasible therapies urgently need to be discovered. Previous studies have shown that miR-95-3p plays crucial roles in several cancer types. However, the roles of miR-95-3p in cervical cancer remain unknown. The micro ribonucleic acid (miRNA) expression data and clinical characteristics of cervical cancer samples were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression analyses were conducted to identify the prognostic-related miRNAs. The potential target genes of miR-95-3p were predicted by the TargetScan database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to explore the target gene of miR-95-3p. The effects of miR-95-3p inhibition and overexpression on cell proliferation were inspected by cell counting kit-8 (CCK-8) assays and cell colony formation assays. Wound-healing assays and transwell assays were also used to examine cell migration ability in HeLa and SiHa cells. MiR-95-3p was the only miRNA significantly associated with the poor prognosis of cervical squamous cell carcinoma. A further analysis suggested that vascular cell adhesion molecule 1 (VCAM1) is a target gene of miR-95-3p in cervical cancer, and miR-95-3p promotes the malignant behavior of cervical cancer cells by inhibiting the expression of VCAM1. The CCK-8 and cell colony assays showed that miR-95-3p downregulation significantly suppressed cell proliferation in the HeLa and SiHa cells. The transwell and wound-healing assays showed that miR-95-3p inhibition suppressed cell migration in the HeLa and SiHa cells. Further the Western blot analysis and the quantitative real-time-polymerase chain reaction (qRT-PCR) showed that the knockdown of miR-95-3p in HeLa cells resulted in increased VCAM1 expression. And VCAM1 was highly expressed in the paired adjacent normal cervical epithelium tissue samples, but lowly expressed in the cervical tumor tissue samples. Our study was the first to show that miR-95-3p could serve as a prognostic biomarker of cervical cancer. Mechanistically, we discovered that miR-95-3p inhibited the expression of the cell adhesion molecule VCAM1 and thus promoted further tumor progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.