Abstract

PurposeTo investigate the role of miR-625 on the invasion, migration, and epithelial–mesenchymal transition (EMT) of non-small cell lung carcinoma (NSCLC) cells, and the related mechanisms.Materials and MethodsThe expression levels of miR-625 and Resistin mRNA in 80 pairs of NSCLC and para-cancerous lung tissues were analyzed by RT-PCR. The relationship between miR-625 and Resistin was predicted by bioinformatics and verified by a dual-luciferase gene reporter assay. NSCLC cells were transfected with Resistin plasmids, si-Resistin plasmids, miR-625 mimics, or miR-625 inhibitors, and proliferation, invasion, and migration were determined by CCK-8, Transwell, and wound scratch assays, respectively. EMT-related proteins were determined by Western blot assay. A xenograft model of NSCLC was established in nude mice to validate the in vitro findings.ResultsMiR-625 was significantly downregulated in NSCLC tissue compared to paired para-cancerous lung tissues, while Resistin was markedly increased in tumor tissue. The expression levels of miR-625 and Resistin were negatively correlated in NSCLC tissues, and high levels of Resistin correlated with greater tumor differentiation, more advanced clinical staging, and lymph node metastasis. Furthermore, Resistin was a target gene of miR-625, and the latter downregulated Resistin to inhibit the EMT, proliferation, invasion, and migration of NSCLC cells in vitro, likely via the PI3K/AKT/Snail signaling pathway. Finally, miR-625 also inhibited the tumorigenic effect of NSCLC cells in vivo by downregulating Resistin.ConclusionMiR-625 acts as a tumor suppressor in NSCLC and inhibits tumor cell invasion and metastasis by blocking the Resistin/PI3K/AKT/Snail pathway and by decreasing EMT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call