Abstract

The Warburg effect, characterized by energy production through a high rate of aerobic glycolysis, is a metabolic hallmark of cancer cells. We previously found that ginsenoside 20(S)-Rg3 upregulated miR-603 and impaired the malignancy of ovarian cancer cells by inhibiting the Warburg effect. However, the precise functional role of miR-603 in ovarian cancer progression remains poorly defined. Here, we report that the level of miR-603 in ovarian cancer tissues is significantly lower than that in para-tumor tissues. Overexpression of miR-603 in ovarian cancer cells inhibits the Warburg effect as evidenced by a decrease in glucose consumption, lactate production and hexokinase-2 (HK2) expression, reduces cell proliferation in vitro, and weakens their migration and invasion. Further, miR-603 directly targets HK2 as indicated in a luciferase reporter assay. In contrast to agomiR-NC, agomiR-603 treatment significantly inhibits tumor growth in vivo and the Warburg effect, which is illustrated by a decreased uptake of 18F-FDG in subcutaneous xenografts and HK2 downregulation. Finally, miR-603 is negatively regulated by DNMT3A-mediated DNA methylation in the promoter region of its precursor gene, suggesting that 20(S)-Rg3 antagonizes DNMT3A-mediated DNA methylation to impair growth, migration and invasion of ovarian cancer cells. In conclusion, miR-603 is a tumor suppressor targeting HK2 in ovarian cancer and its low level may result from DNMT3A-mediated methylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.