Abstract

Endothelial cell apoptosis contributes to cardiovascular diseases such as hypertension, atherosclerosis. MicroRNA regulates endothelial cell function but its role in endothelial cell apoptosis remains to be fully elucidated. This study aims to investigate the role of miR-590-5p in endothelial cell apoptosis and dissect the underlying mechanisms. Flow cytometric analysis, Hoechst 33258 staining and Western blotting were performed to evaluate human umbilical vein endothelial cell (HUVEC) apoptosis induced by Angiotensin (Ang) II. Western blotting and real-time quantitative PCR were conducted to assess the expression of LOX-1. DCFH-DA staining was carried out to measure the generation of reactive oxygen species (ROS). Ang II-induced HUVEC apoptosis was accompanied by downregulation of miR-590-5p; administration of miR-590-5p mimics attenuated HUVEC apoptosis and decreased ROS generation, as indicated by reduced fraction of apoptotic HUVECs and decreased caspase-3 activity. LOX-1 expression was increased by Ang II, and miR-590-5p mimics reduced LOX-1 expression in HUVECs in the absence or presence of Ang II. Pharmacologic or genetic block of LOX-1 with small interference RNA or TS92 (LOX-1 neutralizing antibody) significantly ameliorated HUVEC apoptosis, as evidenced by reduced number of apoptotic HUVECs, inhibited caspase-3 activation and suppressed mitochondrial cytochrome C release. Moreover, LOX-1 siRNA or TS92 treatment dramatically reduced ROS production in HUVECs treated with Ang II. Our data demonstrated that miR-590-5p downregulation promoted Ang II-induced endothelial cell apoptosis by elevating LOX-1 expression and consequently increasing ROS generation. Thus, restoration of miR-590-5p or block of LOX-1 could be therapeutically exploited to alleviate endothelial cell apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.