Abstract
Existing diagnostic methods are limited to observing appearance and demeanor, even though genetic factors play important roles in the pathology of schizophrenia. Indeed, no molecular-level test exists to assist diagnosis, which has limited treatment strategies. To address this serious shortcoming, we used a bioinformatics approach to identify 61 genes that are differentially expressed in schizophrenia patients compared with healthy controls. In particular, competing endogenous RNA network revealed the important role of the gene RASD2, which is regulated by miR-4763-3p. Indeed, analysis of blood samples confirmed that RASD2 is downregulated in schizophrenia patients. Moreover, positron emission tomography data collected for 44 human samples identified the prefrontal and temporal lobes as potential key brain regions in schizophrenia patients. Mechanistic studies indicated that miR-4763-3p inhibits RASD2 by base-pairing with the 3’ untranslated region of RASD2 mRNA. Importantly, RASD2 has been shown to interact with β-arrestin2, which contributes to the regulation of the DRD2-dependent CREB response element-binding protein pathway in the dopamine system. Finally, results obtained with a mouse model of schizophrenia revealed that inhibition of miR-4763-3p function alleviated anxiety symptoms and improved memory. The dopamine transporters in the striatal regions were significantly reduced in schizophrenia model mice as compared with wild-type mice, suggesting that inhibition of miR-4763-3p can lessen the symptoms of schizophrenia. Our findings demonstrate that miR-4763-3p may target RASD2 mRNA and thus may serve as a potential biomarker and therapeutic target for schizophrenia, providing a theoretical foundation for further studies of the molecular basis of this disease.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.