Abstract

ABSTRACT The metastasis of tumor cells is a challenge for the clinical treatment of glioma. Epithelial-mesenchymal transition (EMT) contributes to glioma cell invasiveness. Our previous study confirmed that the expression of miRNA-451, which inhibits the PI3K/Akt signaling pathway by directly targeting CAB39 and plays a repressive role in glioma, is downregulated in glioma. However, the specific mechanism of miRNA-451 regulation in glioma is unclear. In this study, we investigated whether miRNA-451 blocks the processes of EMT and metastasis in glioma cells in vivo and in vitro. By targeting CAB39, miRNA-451 likely triggers the PI3K/Akt/Snail signaling pathway to reduce glioma proliferation, invasion, migration and EMT. We used Western blotting experiments to demonstrate that overexpression of miRNA-451 significantly reduced p-AKT(Ser473), N-cadherin, Vimentin, Twist, Snail and Cyclin D1 expression and increased E-cadherin expression. We demonstrated that overexpression of miR-451 suppressed glioma cell proliferation, invasion, migration and EMT by MTT and colony formation assays, Transwell assays, wound healing assays and animal experiments. Taken together, these results suggest that miRNA-451 can reduce EMT and metastasis in glioma cells through the suppression of the PI3K/Akt/Snail signaling pathway by targeting CAB39 in vitro and in vivo. miR-451 may be a new target for glioma treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call