Abstract

Stroke, the leading cause of long-term disability worldwide, is caused by the blockage or hemorage of cerebral arteries. The resultant cerebral ischemia causes local neuronal death and brain injury. Histone deacetylase 9 (HDAC9) has been reported to be elevated in ischemic brain injury, but its mechanism in stroke is still enigmatic. The present study aimed to unveil the manner of regulation of HDAC9 expression and the effect of HDAC9 activation on neuronal function in cerebral ischemia. MicroRNAs (miRNAs) targeting HDAC9 were predicted utilizing bioinformatics analysis. We then constructed the oxygen glucose deprivation (OGD) cell model and the middle cerebral artery occlusion (MCAO) rat model, and elucidated the expression of CCCTC binding factor (CTCF)/miR-383-5p/HDAC9. Targeting between miR-383-5p and HDAC9 was verified by dual-luciferase reporter assay and RNAi. After conducting an overexpression/knockdown assay, we assessed neuronal impairment and brain injury. We found that CTCF inhibited miR-383-5p expression via its enrichment in the promoter region of miR-383-5p, whereas the miR-383-5p targeted and inhibited HDAC9 expression. In the OGD model and the MCAO model, we confirmed that elevation of HDAC9 regulated by the CTCF/miR-383-5p/HDAC9 pathway mediated apoptosis induced by endoplasmic reticulum stress, while reduction of HDAC9 alleviated apoptosis and the symptoms of cerebral infarction in MCAO rats. Thus, the CTCF/miR-383-5p/HDAC9 pathway may present a target for drug development against ischemic brain injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.