Abstract

Cataract, an eye disease that threatens the health of millions of people, brings about severe economic burden for patients and society. MicroRNA (miR)-378a-5p and miR-630 were recognized as essential regulators in multiple cancers. However, the exact functions of miR-378a-5p and miR-630 in cataract are still unclear. The expression of miR-378a-5p, miR-630, and E2F transcription factor 3 (E2F3) in tissues and cells was measured by quantitative real-time polymerase chain reaction. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was used to evaluate cell viability. Flow cytometry was conducted to analyze cell apoptosis. The interaction between E2F3 and miR-378a-5p or miR-630 was confirmed by dual-luciferase reporter assay. The expression of proteins E2F3, B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase 3 was detected by western blot assay. The expression of miR-378a-5p and miR-630 was up-regulated whereas E2F3 was down-regulated in human cataract lens tissues compared with normal lens tissues. Depletion of miR-378a-5p or miR-630 enhanced proliferation and reduced apoptosis of human lens epithelial cells. Interestingly, up-regulation of E2F3 exhibited the same trend. Next, dual-luciferase reporter assay validated the interaction between E2F3 and miR-378a-5p or miR-630. The rescue experiments further revealed that E2F3 knockdown could recover miR-378a-5p, and miR-630 inhibitor induced promotion of cell proliferation and inhibition of apoptosis in cataract. miR-378a-5p and miR-630 repressed proliferation and induced apoptosis of lens epithelial cells by targeting E2F3 in cataract, representing a prospective alternative therapy for cataract.

Highlights

  • Cataract is a common visual impairment in elderly people and the leading cause of blindness globally [1]

  • The expression of E2F transcription factor 3 (E2F3) messenger RNA (mRNA) and protein was remarkably downregulated in cataract lens tissues compared with the corresponding normal counterparts (Figure 1C and D)

  • SRA01/04 cells were transfected with anti-miR-NC, anti-miR-378a-5p, and anti-miR-630 to explore the effects of miR-378a-5p and miR-630 on cataract cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT)

Read more

Summary

Introduction

Cataract is a common visual impairment in elderly people and the leading cause of blindness globally [1]. The projected number of cataract patients will climb to more than 30 million by 2020 according to census data provided by the USA [2]. The risk factors of cataract are complicated, such as smoking, hypertension, obesity, diabetes, drug usage, and age [3,4,5]. In the current development of medical therapeutic strategies, cataract surgery remains the most effective treatment due to the recovery of the pupillary reflex and optimization of light transmittance [6]. Poor medical care in developing countries impede favorable therapeutic outcomes. It is imperative to develop alternative therapies for cataract

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.