Abstract
This study aimed to detect the expression of miR-373-3p and CCND2 in gemcitabine-resistance pancreatic carcinoma (PC) cells, investigate the relationship between miR-373-3p and CCND2, and explore their effects on PC propagation, migration, invasion and apoptosis. R software was applied for analyzing differentially expressed genes (DEGs) in cell samples. The potential biological pathway was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software. The gemcitabine-resistance PC cells were screened out using MTT assay, and they were applied in the next experiments. MiR-373-3p and CCND2 expression in GEM-PANC-1 cells were measured by qRT-PCR. After transfection, the expression of CCND2 protein was examined via western blot assay. Cells viability and apoptosis were confirmed by MTT proliferation assay and Flow cytometry, whereas cells migration and invasion were analyzed by transwell assay. The targeting relationship between miR-373-3p and CCND2 was identified by dual-luciferase reporter assay. MiR-373-3p was found to be low expressed in GEM-PANC-1 cells while CCND2 was highly expressed in GEM-PANC-1 cells. MiR-373-3p negatively regulated CCND2 expression through KEGG_Cell_Cycle_Signaling_Pathway. The targeted relationship between miR-373-3p and CCND2 could be verified using dual luciferase reporter assay. MTT proliferation assay, transwell assay and Annexin V assay demonstrated that miR-373-3p suppressed GEM-PANC-1 cells propagation and invasion and promoted cell apoptosis, while CCND2 showed totally reverse effects compared with miR-373-3p. All the results suggested that miR-373-3p could enhance the chemosensitivity of GEM-PANC-1 cells by regulating CCND2. MiR-373-3p inhibited cell propagation, migration and invasion and boosted apoptosis in gemcitabine resistance pancreatic carcinoma cells by targeting CCND2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.