Abstract

An increasing body of evidence has demonstrated that the abnormal expression of microRNAs (miRNAs) participate in the development and progression of ovarian cancer. miR-361-5p has been reported to serve as a tumor suppressor or oncogene in a number of different human cancer types. In the current study, it was indicated that miR-361-5p was highly expressed in ovarian cancer tissues. Compared with human ovarian epithelial cells HOSEpiC, miR-361-5p was upregulated in ovarian cancer cell lines, including in ES-2 and SKOV3 cells. The binding sites between TNF receptor-associated factor 3 (TRAF3; a member of the TRAF family of cytoplasmic adaptor proteins) and miR-361-5p were predicted using TargetScan, and a dual luciferase reporter gene assay verified the result. Subsequently, a reverse transcription-quantitative PCR assay and western blot assay indicated that TRAF3 was downregulated in ovarian cancer tissues and cell lines. It was demonstrated that miR-361-5p inhibitor significantly reduced the viability of SKOV3 cells and induced apoptosis. However, all changes were reversed by TRAF3 silencing. Furthermore, it was demonstrated that miR-361-5p inhibitor decreased the expression of p-p65 in SKOV3 cells, indicating the inhibition of the NF-kB signaling pathway. In conclusion, miR-361-5p may regulate the proliferation and apoptosis of ovarian cancer cells by targeting TRAF3. Therefore, targeting miR-361-5p may exhibit therapeutic potential in the treatment of ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call