Abstract

BackgroundExpansion-mediated replicative senescence and age-related natural senescence have adverse effects on mesenchymal stem cell (MSC) regenerative capability and functionality, thus severely impairing the extensive applications of MSC-based therapies. Emerging evidences suggest that microRNA-34a (miR-34a) has been implicated in the process of MSC senescence; however, the molecular mechanisms with regard to how miR-34a influencing MSC senescence remain largely undetermined.MethodsMiR-34a expression in MSCs was evaluated utilizing RT-qPCR. The functional effects of miR-34a exerting on MSC senescence were investigated via gene manipulation. Relevant gene and protein expression levels were analyzed by RT-qPCR and western blot. Luciferase reporter assays were applied to confirm that Nampt is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting Nampt in MSC senescence was further explored by measuring intracellular NAD+ content, NAD+/NADH ratio and Sirt1 activity.ResultsIn contrast to Nampt expression, miR-34a expression incremented in senescent MSCs. MiR-34a overexpression in young MSCs resulted in senescence-associated characteristics as displayed by senescence-like morphology, prolonged cell proliferation, declined osteogenic differentiation potency, heightened senescence-associated-β-galactosidase activity, and upregulated expression levels of the senescence-associated factors. Conversely, miR-34a suppression in replicative senescent and natural senescent MSCs contributed to diminished senescence-related phenotypic features. We identified Nampt as a direct target gene of miR-34a. In addition, miR-34a repletion resulted in prominent reductions in Nampt expression levels, NAD+ content, NAD+/NADH ratio, and Sirt1 activity, whereas anti-miR-34a treatment exerted the opposite effects. Furthermore, miR-34a-mediated MSC senescence was evidently rescued following the co-treatment with Nampt overexpression.ConclusionThis study identifies a significant role of miR-34a playing in MSC replicative senescence and natural senescence via targeting Nampt and further mediating by NAD+-Sirt1 pathway, carrying great implications for optimal strategies for MSC therapeutic applications.

Highlights

  • Expansion-mediated replicative senescence and age-related natural senescence have adverse effects on mesenchymal stem cell (MSC) regenerative capability and functionality, severely impairing the extensive applications of mesenchymal SCs (MSCs)-based therapies

  • P3MSCs displayed fibroblasticlike morphology with elongated and spindle-shaped cell bodies; both P10MSCs and OMSCs exhibited senescence-like morphology with flattened, enlarged, and irregular-shaped cell bodies, less stereoscopic and visible granules, and particles in the cytoplasm

  • Quantitative analysis (Fig. 1e) showed that the percentage of SAβ-gal-positive cells in P10MSCs or OMSCs was significantly more abundant than that in P3MSCs. These observations displayed that P10MSCs and OMSCs showed the senescent alterations unlike young P3MSCs/YMSCs, suggesting that replicative senescence appeared with extensive passages and natural senescence occurred with advancing age

Read more

Summary

Introduction

Expansion-mediated replicative senescence and age-related natural senescence have adverse effects on mesenchymal stem cell (MSC) regenerative capability and functionality, severely impairing the extensive applications of MSC-based therapies. Cultivated primary cells in vitro undergo replicative senescence, which is telomere-initiated senescence [8, 9] Another type of cellular senescence arising from in vivo chronological aging process of individuals, inescapably accompanied by distinctive senescence-related phenotypic characterization, is named as natural senescence [10]. These are considered as major impediments to applications in basic scientific research and clinical MSC-based therapeutic strategies. Promising strategies to rejuvenate replicative and natural senescent MSCs merit urgent exploration

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.