Abstract

Our previous study revealed that mesenchymal stem cells (MSCs) inhibited angiogenesis via miRNA-mediated repression of prospero homeobox 1 (PROX1). This study aimed to verify whether miR-340-5p participates in the therapeutic effect of MSCs on corneal neovascularization (CNV) via repressing PROX1 and epithelial membrane protein 2 (EMP2). The rat CNV model was established by corneal alkali burn. The binding relationship between miR-340-5p and 3'-untranslational regions (3'UTRs) of EMP2 and PROX1 was confirmed using dual-luciferase reporter assay. After culturing corneal epithelial cells (CECs) using MSC supernatants, the vascular endothelial growth factor (VEGF) level in CEC supernatants and the CEC viability were detected. The role of miR-340-5p in the therapeutic effect of MSC on CNV was determined via lentivirus-mediated miR-340-5p intervention in vivo. The expression of miR-340-5p was reduced and EMP2 and PROX1 were increased in CNV corneal tissues. The lentivirus-mediated overexpression of miR-340-5p inhibited the expressions of EMP2 and PROX1. The dual-luciferase reporter assay confirmed that miR-340-5p could bind with the 3'UTRs of EMP2 and PROX1. miR-340-5p was enriched in MSC supernatants and the culture of CECs using MSC supernatants increased the miR-340-5p expression in CECs. After being cultured in miR-340-5p-knocking down MSC supernatants, the expressions of EMP2 and PROX1 were increased, and the VEGF level and CEC viability were restored. The in vivo experiments also indicated that the therapeutic effect of MSCs was mediated by miR-340-5p. miR-340-5p mediates the therapeutic effect of MSCs on CNV via binding and repressing the expressions of EMP2 and PROX1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call