Abstract

Blood transfusion is a common therapeutic procedure in hospitalized patients. Red blood cell (RBC) units undergo various biochemical and morphological changes during storage (storage lesion). miRNAs have been studied intensively regarding cellular metabolic processes, but the effect of miRNAs on blood storage is not well defined. We performed bioinformatics analysis on the public data set of miRNA expression of RBC based on R language, and performed the Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis on the target genes of differentially expressed miRNA. The expression of miRNA differential genes in blood samples stored at different times was verified by qRT-PCR. Next, we used ELISA and qRT-PCR to verify the expression of IL-1β, IL-6, IL-12 and TNF-α in blood at day 1 and day 42. In addition, in vitro, we transfected macrophages with overexpressed miRNA, and the effects of overexpressed miRNA on macrophage polarization and the release of inflammatory factors were verified by flow cytometry and qRT-PCR and ELISA. This study combined bioinformatics analysis and experiments to discover the differentially expressed miRNAs in long-term stored blood. The results showed that compared to fresh blood samples, the inflammatory factors were significantly doubled by ELISA, as well as the higher mRNA expression at 42 day. Experimentally verified that miR-33a-5p promoted the M1 type macrophage polarization and increased the release of related inflammatory factors through PPARα/ACC2/AMPK/CPT-1a axis regulation. This study elucidates a potential mechanism of inflammatory factor accumulation in long-term stored blood, providing a theoretical basis and a potential target to prevent transfusion-related adverse reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.