Abstract

Background:Gastric cancer is one of the most common malignancies worldwide with high mortality. Therefore, identifying cancer-related biomarkers for predicting prognosis and progression of gastric cancer is essential. This study aimed to investigate the clinical value and functional role of microRNA-3196 in gastric cancer.Methods:The relative expression levels of microRNA-3196 in gastric cancer tissues and adjacent normal tissues were detected by quantitative reverse transcription-polymerase chain reaction. In this study, quantitative reverse transcription-polymerase chain reaction, cell proliferation assay, and Transwell migration and invasion assays were performed to explore microRNA-3196 expression level and its effects on cell proliferation, migration, and invasion in gastric cancer cells. The Kaplan-Meier method and multivariate Cox regression analyses were used to explore the prognostic significance of microRNA-3196 in gastric cancer. Dual-luciferase report assay was performed to validate the potential target gene regulated by microRNA-3196 in gastric cancer.Results:The expression of microRNA-3196 was downregulated in gastric cancer tissues and cell lines. Downregulation of microRNA-3196 was associated with lymph node metastasis and Tumor Node Metastasis (TNM) stage. The Kaplan-Meier curve analysis indicated that patients with low expression of microRNA-3196 had a poor prognosis, and the Cox regression analysis results showed microRNA-3196 expression was an independent prognostic factor of gastric cancer. Moreover, overexpression of microRNA-3196 inhibited cell proliferation, migration, and invasion, while knockdown of microRNA-3196 promoted these cellular behaviors in AGS and MKN45 cells. OTX1 may be a potential target gene regulated by microRNA-3196 in gastric cancer.Conclusions:These results suggested that microRNA-3196 might not only a tumor suppressor in gastric cancer cells by modulating OTX1 but also might be an independent prognostic biomarker and therapeutic target of gastric cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call