Abstract

MicroRNAs are key components of cellular regulatory networks, and breakdown in miRNA function causes cascading effects leading to pathophenotypes. A better understanding of the role of miRNAs in diseases is essential for human health. Here, we have devised a method for comprehensively mapping the associations between miRNAs and diseases by merging on a common key between two curated omics databases. The resulting bidirectional resource, miR2Trait, is more detailed than earlier catalogs, uncovers new relationships, and includes analytical utilities to interrogate and extract knowledge from these datasets. miR2Trait provides resources to compute the disease enrichment of a user-given set of miRNAs and analyze the miRNA profile of a specified diseasome. Reproducible examples demonstrating use-cases for each of these resource components are illustrated. Furthermore we used these tools to construct pairwise miRNA-miRNA and disease-disease enrichment networks, and identified 23 central miRNAs that could underlie major regulatory functions in the human genome. miR2Trait is available as an open-source command-line interface in Python3 (URL: https://github.com/miR2Trait) with a companion wiki documenting the scripts and data resources developed, under MIT license for commercial and non-commercial use. A minimal web-based implementation has been made available at https://sas.sastra.edu/pymir18. Supplementary information is available at: https://doi.org/10.6084/m9.figshare.8288825.v3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.