Abstract

Asthma is a complex chronic disease and the pathogenesis is still not entirely clear. In this study, we aimed to clarify the role and mechanism of miR-29b in the development of asthma. We observed that miR-29b levels were decreased in the lung and spleen of OVA-induced asthmatic mice. Reverse transcription-quantitative polymerase chain reaction and flow cytometry demonstrated that the inducible co-stimulator (ICOS) expression at mRNA and protein levels was elevated in the lung of asthmatic mice, and miR-29b expression in the lung of asthmatic mice was negatively associated with ICOS mRNA levels by Pearson Correlation analysis. Additional, flow cytometry showed that the percentage of CD4<sup>+</sup>ICOS<sup>+</sup> T cells in the lung and spleen was regulated by miR-29b, and dual luciferase reporter assay confirmed ICOS was a target gene of miR-29b. Furthermore, miR-29b overexpression in asthmatic mice was induced with miR-29b agomir by intranasal administration; miR-29b alleviated total inflammatory cell infiltration and CCL24 levels, decreased IL-5 levels in bronchoalveolar lavage fluid and serum, and upregulated IFN-γ expression in serum. This study demonstrates that miR-29b targets ICOS, thereby reverses the imbalance of T helper 1 cells (Th1)/Th2 responses and decreases eosinophils recruitment in the airway, which are key features of allergic airway inflammation. Therefore, miR-29b might be an attractive candidate target for asthma treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.