Abstract

Atrial fibrillation (AF) is a major cause of stroke with lifetime risks. microRNAs (miRNAs) are associated with AF attenuation, yet the mechanism remains unknown. This study investigated the functional mechanism of miR-29b in atrial fibrosis in AF. The AF rat model was established by a 7-day intravenous injection of Ach-CaCl2 mixture. AF rats were injected with adeno-associated virus (AAv)-miR-29b and TGFβRΙ overexpression plasmid. AF duration was recorded by electrocardiogram. Atrial fibrosis was observed by Masson staining. Expressions of COL1A1, COL3A1, TGFβRΙ, TGFβΙ, miR-29b and Smad-2/3 pathway-related proteins in atrial tissues were detected by RT-qPCR and Western blot. Binding sites of miR-29b and TGFβRΙ were predicted and their target relationship was verified by dual-luciferase reporter assay. miR-29b was poorly expressed and expressions of COL1A1, COL3A1, TGFβRΙ, and TGFβ1 were increased in atrial tissues of AF rats. miR-29b overexpression alleviated atrial fibrosis, reduced expressions of COL1A1, COL3A1, and TGFβ1, and shortened AF duration in AF rats. TGFβRΙ was highly expressed in atrial tissues of AF rats. miR-29b targeted TGFβRΙ. TGFβRΙ overexpression overcame the improving effect of miR-29b overexpression on AF. miR-29b overexpression decreased ratios of p-Smad-2/3 and Smad-2/3 and inhibited the Smad-2/3 pathway. miR-29b might mitigate atrial fibrosis in AF rats by targeting TGFβRΙ and inhibiting the Smad-2/3 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call