Abstract

TGF-β1-induced epithelial-mesenchymal transition (EMT) has been proved to be associated with metastasis of breast cancer cells. We attempted to detect a novel mechanism that microRNAs mediated the TGF-β1-induced EMT in the process of breast cancer metastasis. Here we reported that the expression of miR-23a was higher in breast cancer cells with high metastasis ability and patients with lymph node metastasis and the treatment of TGF-β1 significantly upregulated the expression of miR-23a in breast cancer cells. We found that miR-23a was upregulated by TGF-β1 post-transcriptionally and Smads directly bound the RNA Smad binding element (R-SBE) of miR-23a. Functional studies showed that inhibition of miR-23a suppressed the TGF-β1-induced EMT, migration, invasion and metastasis of breast cancer both in vitro and in vivo. In addition, we determined that miR-23a directly targeted and suppressed CDH1, one important gene in EMT phenomenon. Notably, Wnt/β-catenin signaling was activated by the suppression of CDH1 in the miR-23a mediated process of TGF-β1-induced EMT and tumor invasion. These results demonstrate that miR-23a promotes TGF-β1-induced tumor metastasis in breast cancer by targeting CDH1 and activating Wnt/β-catenin signaling. Taken together, our results indicate a novel regulatory mechanism of TGF-β1-induced EMT and suggest that miR-23a might be a potential target in breast cancer therapy.

Highlights

  • At present, tumor metastasis is the leading cause of breast cancer death among women because of its surgically inoperable nature and the resistance to existing therapeutic drugs [1, 2]

  • MiR-23a expression was higher in patients with lymph node metastasis and metastatic cell lines and the treatment of TGF-β1 upregulated the expression of miR-23a in MCF-7 and MDAMB-231 cell lines

  • A previous study showed that activation of TGF-β receptor type I led to phosphorylation of receptor-specific SMAD (R-SMAD) proteins and R-SMADs could play a role in the post-transcriptional regulation of microRNAs [16]

Read more

Summary

Introduction

Tumor metastasis is the leading cause of breast cancer death among women because of its surgically inoperable nature and the resistance to existing therapeutic drugs [1, 2]. Recent studies revealed that epithelialmesenchymal transition (EMT) played a pivotal role in the process of breast cancer metastasis. During the EMT process, tumor cells lose cell polarity [5] and the connection between cells becomes loose [6]. This process of EMT is the crucial step for cancer cells to metastasis. TGF-β, a cytokine with multiple biological functions, was first described as an inducer of EMT in normal mammary epithelial cells, and several subsequent studies reported important roles of TGF-β-induced EMT in tumor metastasis [7]. It was reported that TGF-β activated the www.impactjournals.com/oncotarget

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call