Abstract

To explore the role and possible mechanism of miR-21 in anti-VEGF drug-induced epithelial-mesenchymal transformation (EMT) in human retinal pigment epithelium (ARPE-19) cells, and to seek more therapeutic targets to improve prognosis vision. ARPE-19 cells were exposed to clinical dosage of bevacizumab and miR-21 expression was measured by real-time polymerase chain reaction (RT-PCR) assay. MiR-21 mimic and inhibitor were transfected into bevacizumab-induced ARPE-19, the expression of α-smooth muscle actin (α-SMA), E-cadherin, and SNAI1 were detected by cell immunofluorescence and Western blotting. Clinical dosage of bevacizumab caused EMT and enhanced miR-21 expression in ARPE-19 cells (P<0.05). The inhibition of miR-21 attenuated the EMT effect of bevacizumab, while overexpression of miR-21 promoted this activity (P<0.05). The SNAI1 was up-regulated by bevacizumab and promotion was partially suppressed by the miR-21 inhibitor and aggravated by the miR-21 mimic (P<0.05). MiR-21 promotes bevacizumab-induced EMT in ARPE cells which is significantly positively correlated with SNAI1. MiR-21 might be a potential miRNA-based therapeutic target for reducing bevacizumab-induced subretinal fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.