Abstract

Upregulation of miR-21 in renal ischaemic preconditioning (IPC) was associated with increased hypoxia inducible factor (HIF)-1α expression. Hypoxic induction of HIF-1α is mediated by inhibition of prolyl hydroxylase domain protein 2 (PHD2) .We hypothesized that miR-21 regulated HIF-1α by targeting PHD2 in the renal IPC. Luciferase reporter assay examined if miR-21 target the 3'-untranslated region of PHD2. In vitro, human proximal tubular cell line (HK-2) was incubated in hypoxia or hypoxia/ reoxygenation condition. Kidneys of Mice were respectively subjected to ischaemia/reperfusion injury (IRI) and IPC. Locked nucleic acid (LNA) modified anti-miR-21 was used to knockdown miR-21. Serum creatinine and histological changes estimated the renal injury. Levels of HIF-1α, PHD2, VEGF and miR-21 were examined by western blot or real-time PCR. miR-21 targeting of PHD2 was confirmed by 3'-untranslated region reporter assay. miR-21 was significantly upregulated by hypoxia/reoxygenation in HK-2 cell, while PHD2 protein level decreased significantly. LNA anti-miR-21 significantly repressed miR-21 levels and increased the abundance of PHD2. In vivo, IPC upregulated miR-21 expression 24 h after the second ischaemia, while PHD2 expression decreased significantly with upregulation of HIF-1α protein and VEGF mRNA. MiR-21 induced by delayed IPC was effectively inhibited by the LNA anti-miR-21. With downregulation of miR-21, the protection of delayed IPC was attenuated and PHD2 protein was increased. Furthermore, upregulation of HIF-1α and VEGF were abolished after the LNA anti-miR-21 treatment. miR-21 could protect kidney against IRI via HIF-1α by inhibiting its target PHD2.The study suggested a new relationship between miR-21 and HIF-1α.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call