Abstract
Glucagon-like peptide 1 receptor (GLP1R) agonists are widely used to treat diabetes. However, their function is dependent on adequate GLP1R expression, which is downregulated in diabetes. GLP1R is highly expressed on pancreatic β-cells, and activation by endogenous incretin or GLP1R agonists increases cAMP generation, which stimulates glucose-induced β-cell insulin secretion and helps maintain glucose homeostasis. We now have discovered that the highly β-cell–enriched microRNA, miR-204, directly targets the 3′ UTR of GLP1R and thereby downregulates its expression in the β-cell–derived rat INS-1 cell line and primary mouse and human islets. Furthermore, in vivo deletion of miR-204 promoted islet GLP1R expression and enhanced responsiveness to GLP1R agonists, resulting in improved glucose tolerance, cAMP production, and insulin secretion as well as protection against diabetes. Since we recently identified thioredoxin-interacting protein (TXNIP) as an upstream regulator of miR-204, we also assessed whether in vivo deletion of TXNIP could mimic that of miR-204. Indeed, it also enhanced islet GLP1R expression and GLP1R agonist–induced insulin secretion and glucose tolerance. Thus, the present studies show for the first time that GLP1R is under the control of a microRNA, miR-204, and uncover a previously unappreciated link between TXNIP and incretin action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.