Abstract

The aim of this study was to explore the role of microRNA-203 (miR-203) in Prostate Cancer (PCa), and to further verify its influence in PCa cell function. The expression level of miR-203 in 55 clinical PCa cases and cell lines was detected by qRT-PCR. Then, the target gene of miR-203 in PCa cells was predicted and verified by online prediction software and Luciferase reporter gene assay, respectively. Furthermore, the role of miR-203 in PCa cell proliferation, colony formation, cell cycle and metastasis capacities was detected through a series of in vitro experiments. The expression of miR-203 in PCa tissues and cells was significantly reduced when compared with that of normal tissues and cells. In searching for potential downstream targets of miR-203, a regulator of G-protein signaling 17 (RGS17) entered our sight due to its active role in a variety of malignant tumors. More importantly, the negative regulation of RGS17 by miR-203 was verified by Luciferase reporter gene assay. Functional experiments demonstrated that low expression of RGS17 in PCa cells induced by up-regulation of miR-203 could significantly restrain the proliferation, invasion and migration capacities of PCa cells. MiR-203 served as a tumor suppressor gene in PCa. Through targeting RGS17, miR-203 significantly controlled the malignant behavior of PCa cells. Our findings revealed that miR-203/RGS17 axis might be a potential therapeutic target for the treatment of PCa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.