Abstract

Acute respiratory distress syndrome (ARDS) is regarded as a type of respiratory failure. Emerging evidence has demonstrated the significant roles of microRNAs in various disorders. Nevertheless, the role of miR-202-3p in ARDS is unclear. Forty male C57BL/6 mice treated with phosphate buffer saline/lipopolysaccharide (PBS/LPS) and administrated with NC/miR-202-3p agomir were divided into four groups. A reverse transcription-quantitative polymerase chain reaction was used to evaluate the level of miR-202-3p, its target genes, and proinflammatory factors. Hematoxylin‑eosin was utilized for histological observation of the lung tissues. The Wet/Dry ratio, myeloperoxidase activity, and total protein concentration in bronchoalveolar lavage fluid were assessed to determine pulmonary edema. Western blotting was used for quantifying protein levels of proinflammatory factors, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) signaling-associated proteins. Calmodulin 1 (Calm1) protein expression in murine lung tissues was evaluated by immunohistochemistry. The binding relation between miR-202-3p and Calm1 was assessed by luciferase reporter assay. The results showed that miR-202-3p was lowly expressed in the lung tissues of ARDS mice. Overexpressed miR-202-3p relieved LPS-induced edema, reduced proinflammatory factors, and inactivated NF-κB/NLRP3 signaling in murine lung tissues. Calm1 was targeted by miR-202-3p and displayed a high level of LPS-induced ARDS. In conclusion, miR-202-3p targets Calm1 and suppresses inflammation in LPS-induced ARDS, thereby inhibiting the pathogenesis of ARDS in a mouse model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call