Abstract

Nasopharyngeal carcinoma (NPC), a highly metastatic and invasive malignant tumor originating from the nasopharynx, is widely prevalent in Southeast Asia, the Middle East and North Africa. Although viral, dietary and genetic factors have been implicated in NPC, the molecular basis of its pathogenesis is not well defined. Based on a recent microRNA (miRNA) microarray study showing miR-200 downregulation in NPC, we further investigated the role of miR-200a in NPC carcinogenesis. We found that the endogenous miR-200a expression level increases with the degree of differentiation in a panel of NPC cell lines, namely undifferentiated C666-1, high-differentiated CNE-1, and low-differentiated CNE-2 and HNE1 cells. By a series of gain-of-function and loss-of-function studies, we showed that over-expression of miR-200a inhibits C666-1 cell growth, migration and invasion, whereas its knock-down stimulates these processes in CNE-1 cells. In addition, we further identified ZEB2 and CTNNB1 as the functional downstream targets of miR-200a. Interestingly, knock-down of ZEB2 solely impeded NPC cell migration and invasion, whereas CTNNB1 suppression only inhibited NPC cell growth, suggesting that the inhibitory effects of miR-200a on NPC cell growth, migration and invasion are mediated by distinct targets and pathways. Our results reveal the important role of miR-200a as a regulatory factor of NPC carcinogenesis and a potential candidate for miRNA-based therapy against NPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.