Abstract

Congenital diaphragmatic hernia (CDH) is a life-threatening disease associated with pulmonary hypoplasia. CDH occurs approximately 1 in every 2000-3000 live births, and the pathophysiology is unknown. MicroRNAs are short, non-coding RNAs that control gene expression through post-transcriptional regulation. Based on our previous work, we hypothesized that the miR-200 family is differentially expressed in normal and abnormal lung development. We aimed to examine the expression of the miR-200 family during normal and hypoplastic lung development due to CDH. We performed reverse transcriptase polymerase chain reaction (RT-qPCR) and fluorescent in situ hybridization (FISH) to study the expression levels and distribution of the miR-200 family members on embryonic day 21 (E21) rat control and nitrofen-induced hypoplastic CDH lungs. RT-qPCR showed up-regulation of miR-200a in hypoplastic CDH lungs. FISH showed contrasting expression patterns for miR- 200a, miR-200c, and miR-429 between control and hypoplastic CDH lungs, while we could not detect miR-141 in control and hypoplastic CDH lungs. We demonstrate a specific expression pattern of miR-200 family members in hypoplastic CDH lungs different from control lungs. This study suggests that disruption of miR-200 family expression plays a role in the pathogenesis of pulmonary hypoplasia associated with CDH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.