Abstract

Hair follicles undergo a renewal cycle consisting of anagen, telogen and catagen stages. MicroRNA (miRNA) plays a crucial role in this process. Recent studies have shown that miR-199a-5p, which exhibits differential expression between anagen and telogen stages in the hair follicle cycle of cashmere goats, inhibits the proliferation of various cell types, including skin keratinocytes and vascular endothelial cells. Since the proliferation of dermal papilla cells (DPCs) is a key factor in the hair follicle cycle, we utilized DPCs to investigate the function and molecular mechanism of miR-199a-5p in cashmere goats. Our functional analysis revealed that miR-199a-5p significantly suppressed cell viability and proliferation of DPCs, as evidenced by MTT, EdU and RT-qPCR methods. Subsequently, we investigated the regulatory mechanism of miR-199a-5p. Through bioinformatics analysis, a potential correlation between lnc102173187 and miR-199a-5p was predicted. However, the dual luciferase reporter assay revealed no interaction between lnc102173187 and miR-199a-5p. Further investigation using dual-luciferase reporter assay, RT-qPCR, and western blot results confirmed that VEGFA was the target gene of miR-199a-5p from. The functional experiment demonstrated that VEGFA promoted the proliferation of DPCs, and antagonized the inhibitory effect of miR-199a-5p on DPCs proliferation. Taken together, this research revealed the role of miR-199a-5p and VEGFA on the proliferation of dermal papilla cells in cashmere goat, which would enrich the theoretical basis for hair follicle development, and could also serve as a marker cofactor to play an important reference and guidance role in the breeding, improvement and optimization of cashmere goat breeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.