Abstract

Breast cancer is the most common type of malignancy in women, which remains a significant health concern worldwide. Gemcitabine is a frequently applied anticancer pharmacological agent. However, the efficacy of gemcitabine is limited by chemoresistance. In the present study, a combination of reverse transcription quantitative-PCR, cell viability, flow cytometry, luciferase reporter assay and western blot analysis were performed to elucidate the potential effects of miR-187-3p on gemcitabine sensitivity in the breast cancer cell line, MDA-MB-231. The results revealed that miR-187-3p was significantly decreased in the breast cancer tumor tissues. Moreover, the overexpression of miR-187-3p significantly inhibited cell viability and promoted apoptosis in MDA-MB-231 cells. In addition, miR-187-3p overexpression enhanced the anti-proliferative and pro-apoptotic effects of gemcitabine, indicating that miR-187-3p regulated gemcitabine sensitivity in breast cancer cells. Mechanistically, miR-187-3p negatively regulated the expression of fibroblast growth factor 9 (FGF9) by binding to its 3'-untranslated region. Overexpression of FGF9 reversed the aforementioned effects of miR-187-3p overexpression on cell viability and apoptosis in the presence of gemcitabine. In conclusion, the present study indicated that miR-187-3p increased gemcitabine sensitivity in breast cancer cells by targeting FGF9 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call