Abstract

MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important roles during cell differentiation. Hence, using bipotent K562 human leukemia cells and human CD34+ hematopoietic progenitor cells as research models, we demonstrate that let-7 and Lin28 have contrary roles in megakaryocytic (MK) differentiation with a dynamic balance; expression of miR-181 is capable of effectively repressing Lin28 expression, disrupting the Lin28-let-7 reciprocal regulatory loop, upregulating let-7, and eventually promoting MK differentiation. However, miR-181 lacks a significant effect on hemin-induced erythrocyte differentiation. These results demonstrate that miR-181 can function as a 'molecular switch' during hematopoietic lineage progression specific to MK differentiation, thus providing insight into future development of miRNA-oriented therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.