Abstract

Protection against renal fibrosis is important for the management of obstructive nephropathy. We researched the roles and possible mechanism of miR-155-5p in renal interstitial fibrosis, which may provide a potential endogenous target for renal interstitial fibrosis in obstructive nephropathy. Herein, NRK-49F cells were transfected with miR-155-5p mimic, miR-155-5p inhibitor, SIRT1 plasmid and/or SIRT1 siRNA. The unilateral ureteral obstruction (UUO) model was built with male C57 black mice and administrated with SRT1720 by tail vein injection. Levels of miR-155-5p, SIRT1 and relative proteins (TGF-β1, α-SMA, Collage I and fibronectin) in NRK-49F cells or mice kidney tissues were measured with quantitative reverse transcription polymerase chain reaction or Western blot. The target gene of miR-155-5p was analyzed through TargetScan and dual-luciferase reporter assay. Mice kidney tissue was stained with Masson trichrome. It was found that miR-155-5p overexpression promoted the expressions of fibroblast related proteins expression and inhibited the SIRT1 expression in NRK-49F cells, while miR-155-5p silencing had an opposite effect. SIRT1 can bind with miR-155-5p. MiR-155-5p inhibited the level of SIRT1. Fibroblast related proteins were up-regulated by miR-155-5p and down-regulated by SIRT1 in NRK-49F cells, while the up-regulatory effect of miR-155-5p was reversed by SIRT1. MiR-155-5p expression was up-regulated and SIRT1 expression was down-regulated in the kidney tissue of UUO mice. SRT1720 attenuated the fiber deposition, up-regulated SIRT1 level and down-regulated the levels of fibroblast related proteins in UUO model mice. To conclude, miR-155-5p promotes renal interstitial fibrosis in obstructive nephropathy via inhibiting SIRT1 signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call