Abstract

MicroRNAs (miRNAs) have emerged as key modulators in the pathophysiologic processes of cardiovascular diseases. However, its function in cardiac injury induced by obstructive sleep apnea (OSA) remains unknown. The aim of the current study was to identify the effect and potential molecular mechanism of miR-146a-5p in intermittent hypoxia(IH)- induced myocardial damage. We exposed H9c2 cells to IH condition; the expression levels of miR-146a-5p were detected by RT-qPCR. Cell viability, cell apoptosis, and the expressions of apoptosis-associated proteins were assessed via Cell Counting Kit-8 (CCK-8), flow cytometry, and western blotting, respectively. Target genes of miR-146a-5p were confirmed by dual-luciferase reporter assay. IH remarkably lowered viability but enhanced cell apoptosis. Concomitantly, the miR-146a-5p expression level was increased in H9c2 cells after IH. Subsequent experiments showed that IH-induced injury was alleviated through miR-146a-5p silence. X-linked inhibitor of apoptosis protein (XIAP) was predicted by bioinformatics analysis and further confirmed as a direct target gene of miR-146a-5p. Surprisingly, the effect of miR-146a-5p inhibition under IH may be reversed by downregulating XIAP expression. In conclusion, our results demonstrated that miR-146a-5p could attenuate viability and promote the apoptosis of H9c2 by targeting XIAP, thus aggravating the H9c2 cell injury induced by IH, which could enhance our understanding of the mechanisms for OSA-associated cardiac injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.