Abstract

Gallbladder cancer (GBC) is the most common malignancy in biliary tract with poor prognosis. Due to its high chemoresistance, systemic chemotherapies have had limited success in treating GBC patients. MicroRNAs (miRNAs) are emerging novel regulators of chemoresistance, which modulate the expression of drug resistance-related genes. In this study, we investigated the association between miR-145 expression and cisplatin sensitivity by both in vivo and in vitro analysis. Quantitative PCR (q-PCR) analysis indicated an increased miR-145 expression in GBC tissues. In addition, studies on GBC cell lines suggested an increased cisplatin efficacy with miR-145 overexpression, whereas decreasing miR-145 expression reduced cisplatin sensitivity. Further, we found that miR-145 accelerated MRP1 mRNA degradation by directly targeting its 3'-UTR and therefore caused increased cisplatin toxicity in GBC cells. Moreover, lower miR-145 and higher MRP1 expression levels predicted poor prognosis in GBC patients who received chemotherapy. Collectively, our findings established a rationale for using miR-145 expression as a biomarker to identify cisplatin-resistant GBC patients and propose that treatment strategies increasing the expression of miR-145 could be a new therapeutic approach for GBC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call