Abstract

Development of skeletal muscle is a complicated biological process regulated by various regulation factors and signal pathways. MicroRNAs (miRNAs) are novel gene regulators that control muscle cell development. microRNA-143 (miR-143) is highly expressed in skeletal muscle, and we found that miR-143 level is significantly increased during bovine skeletal muscle satellite cells (MSCs) differentiation process through microarray analysis and qRT-PCR detection. However, the function of miR-143 in bovine muscle development remained unclear. In our work, the functions of miR-143 in bovine MSCs myogenic differentiation were investigated. We discovered that IGFBP5 is directly regulated by miR-143 using a dual-luciferase reporter assay. Overexpression of miR-143 led to decreased level of IGFBP5 protein and restrained cell proliferation and differentiation, while downregulation of miR-143 resulted in increased levels of IGFBP5 protein and restrained cell proliferation but improved differentiation. IGFBP5, an important component of IGF signaling pathway, contributes greatly to bovine muscle cell development. A mechanism that miR-143 can regulate the proliferation and differentiation of bovine MSCs through changing expression of IGFBP5 was elucidated by our study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.